Analysis of Perchlorate- Right or Wrong?

Dr. Andrew Eaton - "a'h !
Mr. Ali Haghani

Montgomery Watson Laboratories 555 East Walnut Street Pasadena, CA 91101

Water Quality Technology Conference Denver, Colorado November 11, 1997

What are the Issues?

- Perchlorate is a serious recognized problem in California and Nevada
- There are known sources for perchlorate
- Is the analytical method capable of meeting the needs?
- Is perchlorate a serious problem across the country?
- Is it localized in occurrence or like VOCsubiquitous?

First Cut Approach

- Urgent Problem in California
 - strong interest in monitoring to evaluate concern
- California Department of Health Services (CDHS) developed a method for trace analysis of perchlorate
- Optimization of the CDHS Method for rapid throughput and high sensitivity

Optimization of the Method

- Ion Chromatography
 - Selection of Column AS5
- Avoiding False Directions
 - Chloosing the right eluant, regenerant, and conditions
- MDL Determination and P&A
- Typical Chromatograms
- Potential Interferences avoiding them

CLO₄ Analysis - doing the numbers

- MDL = 0.8 ppb
 - (based on 4 ppb spike)
- MRL = 4 ppb

- Linear Range = 2 ppb to >100 ppb
- Recovery of check standards at the CA Action Level (18 ppb) = 101-106%

Instrument Operating Conditions

- Dionex Model DX500
- AG5 Guard + AS5 Ionpac Column
- 750 ul Injector Loop
- Eluent 120 mM NaOH + 2mM p-cyanophenol
- Regenerant AMMS-II with 60mN H₂SO₄
 - Note this is important for low noise
- Conductivity background <15 uS

Eliminating Interferences-thio

This ows the effect of changing eluant and flow rate based on attempting to use the SRS supressor, which can not handle 120 mM NaOH

Chromatograms of Standards

4 ppb CLO₄ - smoothed

4 ppb CLO₄
- no smoothing

Note: Peak with a new column is much sharper than these examples

Typical Full Scale Chromatogram

2

Other Anions

CIO₄

-1

0.00

5.00

Sample w 7 ppb ClO₄

Chromatograms of Samples

Sample w 30 ppb ClO₄

Sample w 7 ppb ClO₄ no smoothing

Perchlorate Calibration Curve

Amt = 0.0126 * Resp + 0.8056 $r^2 = 0.999$

Results - National Overview

- 700+ Samples tested in 2 months
 - Mostly California and Nevada
- 25 States represented
- Both ground and surface waters tested

Number of Samples Analyzed by State

>50 samples

10-49 samples

6-9 samples

3-5 samples

1-2 samples

Not Tested

Distribution of CIO₄ Hits by State

Hits

No Hits

Not Tested

National Overview - Summary

- California >20% Hits
- Nevada >60% Hits (targeted samples)
- Utah >50% Hits (targeted samples)
- West Virginia 10% Hits
- Others 0% Hits
- SOCs nationally <1% Hits

National Overview-700+ samples

Conclusions

- Determination of perchlorate at trace levels is a non-trivial analytical task
- Perchlorate is NOT a national problem per se as far as levels and frequency
- Perchlorate is much more common than SOCs or VOCs, which are regulated nationally

Conclusions - continued

- The places where it does occur at <u>high</u> concentrations are "predictable" based on historic or current use
- When it does occur, it is widespread in a given area because it is so mobile
- There will likely be other "perchlorates" in the future
- Treatability is the ultimate problem

